
 

   AFRL-RW-EG-TP-2011-011 
 

Infrared Stationary Object Acquisition and Moving 
 Object Tracking 

 
 
Sengvieng Amphay 
David Gray 
 
Air Force Research Laboratory, Munitions Directorate 
AFRL/RWGI 
101 West Eglin Blvd 
Eglin AFB, FL 32542-6810 
 
 
March 2011 
 
 
Conference Paper 

AIR FORCE RESEARCH LABORATORY 
MUNITIONS DIRECTORATE 

 
  Air Force Materiel Command 

  
 

 United States Air Force  Eglin Air Force Base, FL 32542 

DISTRIBUTION A:  Approved for public release; distribution unlimited.  96 ABW/PA Approval 
and Clearance # 96ABW-2010-0495, dated 7 September 2010.  

© Copyright 2010 Society of Photo-Optical Instrumentation Engineers.  This paper was presented at 
the 2010 SPIE Remote Sensing Symposium, 20-24 September, 2010 in Toulouse France, and has 
been published in the unclassified proceedings. 
One or more of the authors is a U.S. Government employee working within the scope of his/her 
position; therefore, the U.S. Government is joint owner of the work and has the right to copy, 
distribute, and use the work.  All other rights are reserved by the copyright owner 
 
This paper is published in the interest of the scientific and technical information exchange. 
Publication of this paper does not constitute approval or disapproval of the ideas or findings.  



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE  
07-03-2011 

2. REPORT TYPE 
Interim 

3. DATES COVERED (From - To) 
Nov, 2008 – Sep, 2010  

4. TITLE AND SUBTITLE 
 
 
 
 
 
 
 
 

5a. CONTRACT NUMBER 
 NA 

Infrared Stationary Object Acquisition and Moving Object  
Tracking

5b. GRANT NUMBER 
 NA 

 
 

5c. PROGRAM ELEMENT NUMBER 
 61102F 

6. AUTHOR(S) 
 
 
 
 

5d. PROJECT NUMBER 
2311 

Sengvieng Amphay  
David Gray 
 
 
 

5e. TASK NUMBER 
EW 

 
 
 
 

5f. WORK UNIT NUMBER 
91 
 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Air Force Research Laboratory, Munitions Directorate 
 

  

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

AFRL/RWGI 
101 West Eglin Boulevard 
Eglin AFB, FL 32542-6810 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
AFRL-RW-EG-TP-2011-011 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
Air Force Research Laboratory, Munitions Directorate  AFRL-RW-EG 
AFRL/RWGI   
101 West Eglin Boulevard 
 

 11. SPONSOR/MONITOR’S REPORT  
Eglin AFB, FL  32542-6810        NUMBER(S)   
  AFRL-RW-EG-TP-2011-011 
12. DISTRIBUTION / AVAILABILITY STATEMENT  
DISTRIBUTION A:  Approved for public release; distribution unlimited.  96 ABW/PA Approval and Clearance 
# 96ABW-2010-0495, dated 7 September 2010.  

13. SUPPLEMENTARY  
                                         SEE COVER PAGE FOR PERTINENT METADATA INFORMATION. 
 
14. ABSTRACT 
Currently, there is much interest in developing electro-optic and infrared stationary and 
moving object acquisition and tracking algorithms for Intelligence, Surveillance, and 
Reconnaissance (ISR) and other applications.  Many of the existing EO/IR object acquisition 
and tracking techniques work well for good-quality images, when object parameters such as 
size are well-known. However, when dealing with noisy and distorted imagery many techniques 
are unable to acquire stationary objects nor acquire and track moving objects. 
 

This technical paper will discuss two inter-related problems: (1) stationary object 
detection and segmentation and (2) moving object acquisition and tracking in a sequence of 
images that are acquired via an IR sensor mounted on both stationary and moving platforms. 
 
 
15. SUBJECT TERMS 
autonomous object acquisition, stationary object detection, moving object acquisition, object 
tracking, autonomous object recognition, moving object indicator 
 16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
 Sengvieng Amphay 

a. REPORT 
 
UNCLASSIFIED 

b. ABSTRACT 
 
UNCLASSIFIED 

c. THIS PAGE 
 
UNCLASSIFIED 

    UL 
 

 
12   

19b. TELEPHONE NUMBER (include area 
code) 
  850-883-0883 
  Standard Form 298 (Rev. 8-98) 

Prescribed by ANSI Std. Z39.18 
 



 
 

 

Infrared Stationary Object Acquisition and Moving Object 
Tracking  

 
Sengvieng Amphay and David Gray 

Integrated Sensing and Processing Sciences Branch 
U.S. Air Force Research Laboratory 101 West Eglin Blvd. Eglin AFB FL, USA 32542 
 
 

ABSTRACT 
 
 
Currently, there is much interest in developing electro-optic and infrared stationary and moving object 
acquisition and tracking algorithms for Intelligence, Surveillance, and Reconnaissance (ISR) and other 
applications.  Many of the existing EO/IR object acquisition and tracking techniques work well for good-
quality images, when object parameters such as size are well-known. However, when dealing with noisy 
and distorted imagery many techniques are unable to acquire stationary objects nor acquire and track 
moving objects. 
 

This paper will discuss two inter-related problems: (1) stationary object detection and segmentation 
and (2) moving object acquisition and tracking in a sequence of images that are acquired via an IR sensor 
mounted on both stationary and moving platforms. 

 
             1.  A stationary object detection and segmentation algorithm called “Weighted Adaptive Iterative 
Statistical Threshold (WAIST)” will be described.  The WAIST algorithm takes any intensity image and 
separates object pixels from the background or clutter pixels.  Two common image processing techniques 
are nearest neighbors clustering and statistical thresholding.  The WAIST algorithm uses both techniques 
iteratively, making best use of both techniques.  Statistical threshold takes advantage of the fact that object 
pixels will exist above a threshold based on the statistical properties of the known noise pixels in the image.  
The nearest neighbor technique takes advantage of the fact that when many neighboring pixels are known 
object pixels, the pixel in question is more likely to be a object pixel.  The WAIST algorithm initializes the 
nearest neighbor parameters and statistical threshold parameters and adjusts them iteratively to converge to 
an optimal solution.  Each iteration of the algorithm conservatively declares a pixel to be noise as the 
statistical threshold is raised.  This algorithm has proven to segment objects of interest from noisy 
backgrounds and clutter. Results of the effort are presented. 
 

2.  For moving object detection and tracking we identify the challenges that the user faces in this 
problem; in particular, blind geo-registration of the acquired spatially-warped imagery and their calibration. 
For moving object acquisition and tracking we present an adaptive signal/image processing approach that 
utilizes multiple frames of the acquired imagery for geo-registration and sensor calibration.  Our method 
utilizes a cost function to associate detected moving objects in adjacent frames and these results are used to 
identify the motion track of each moving object in the imaging scene.  Results are presented using a 
ground-based panning IR camera. 
 
Keywords:  autonomous object acquisition, stationary object detection, moving object acquisition, object 
tracking, autonomous object recognition, moving object indicator 
 

1.0  INTRODUCTION 
This paper presents algorithms for detecting multiple stationary and moving objects via 2D WAIST 
algorithm for non-moving  and adaptive change detection for moving objects and estimating/tracking their 
individual motion paths. The first part of this paper, the stationary object acquisition, begins with the 
principles governing 2D WAIST algorithm - iteratively applying both image processing techniques: nearest 



 
 

neighbors clustering and statistical thresholding to optimize the detection algorithm robustness and 
performance.  The second part of the paper, the moving object acquisition and tracking, uses 2D adaptive 
change detection in dual imagery as the basis of our MTI approach. Initial results with FLIR imagery on 
ground platforms are illustrated. 

 

 
2.0  IR IMAGE PROCESSING AND STATIONARY OBJECT ACQUISITION 

ALGORITHM 
 

2.1 Technical Description of WAIST algorithm 
 
Recent technological advances in IR sensor manufacturing enable the fabrication of compact and high 
quality focal plane (FPA) array cooled/uncooled IR cameras, suitable as sensors for smart weapons and 
unmanned aerial vehicles (UAV) Intelligence, Surveillance, and Reconnaissance (ISR) applications.   The 
technology is continuing to develop and is increasingly used by commercial and military sectors, therefore 
the cost of IR cameras continue to decrease for seeker applications.   
In this research, a novel image processing and object acquisition algorithm for mobile stationary objects 
was investigated, developed, and tested against numerous 2-dimentional modality imaging sensor data sets.  
This object acquisition and segmentation algorithm, WAIST is illustrated in Figure 1 below: 
 

 
 

Figure 1 WAIST Algorithm 
 

The WAIST algorithm begins with an initial assumption that at least a certain part of the image has objects 
of interest to be separated from the background, and that the objects of interest do not take up the entire 
scene.  The algorithm designates an initial percentage of pixels in the image as background pixels.  The 
algorithm then orders the pixels from lowest to highest intensity using the probability distribution function 
or histogram approach.  A statistical adaptive threshold two parameter constant false alarm rate (CFAR) 
process is calculated to separate objects from background.  This approach is developed under the 
assumption that the characteristics of the signal and noise change over different region of the image.   In 
general, image characteristics differ considerably from one region to another.  Degradations may also vary 
from one region to another.  It is reasonable, then, to adapt the processing to the changing characteristics of 
the image and degradation. Therefore, the threshold,   initially assigns the pixels with low intensity 
signature to the background as described in the previous paragraph. During subsequent iterations, this 



 
 

threshold is recomputed as a number of standard deviations times the fraction of nearest neighbor pixels 
that are object (not background) above the mean of the background pixels designated in the previous 
iteration.   If the number of background pixels does not grow appreciably from one iteration to the next, 
than the algorithm is determined to have converged and the algorithm iterates no further.   
 Each iteration saves the resultant image to create a “data cube” that is a three dimensional array that is A 
by B by C, where A is the number of images produced and B by C is the size of the original image.  Pixels 
that are deemed object pixels early in the algorithm can be assumed to be of a lower reliability than those 
that are deemed object pixels later in the algorithm.   The number of iterations is automatically set by the 
algorithm itself based on the background statistical calculation.  The threshold value is given by    
  
                                                                           = µ + W.m. α             (1) 
 
             Were  =  threshold 

            μ  )      𝒾=1…….N,  and   𝒿 = 1……….M                           (2) 

 
           N = number rows of the image 
          M = number columns of the image 
          m = constant is depended on the quality of the image scene 
         W = Constant varying from 2 to 4 depended on the clutter probability distribution   
                 function 
 

                                                   α=                                                                        (3)                                 

 
       K = sample size of the image                          
 

The fraction of nearest neighbor pixels in an n by n (n is another user set parameter) window surrounding 
but not including the pixel of interest is computed in another subroutine.  It should be noted that the 
weighting of these nearest neighbor pixels is inversely proportional to their Euclidean distance from the 
center. 
 

                   I = 1……..S, and  j  = 1…………R                                    (4)   

  
                                                =                                                                               (5)                

 
           Where   S is the size of row of kernel 
           R is the size of column of kernel 
                        the Euclidean distance from test pixel to neighbor pixel 
                          is the weight of the neighbor pixel i, j 
 
Note that when the threshold is established, all pixels below the threshold are deemed background pixels.  
This new set of background pixels is used to re-compute the mean and standard deviation for the next 
iteration.  The new distribution of background pixels is also used to re-compute the nearest neighbor 
fraction of every image pixel.  If the number of background pixels does not grow appreciably from one 
iteration to the next (this percentage is user set), then the algorithm is determined to have converged and the 
algorithm iterates no further. 
Earlier, the WAIST algorithm was developed and exercised against several imaging sensor data sets.   
Recently, long-wave infrared data has also been evaluated using the WAIST object detection and 
segmentation algorithms. Figure 2 is a photo of stationary objects in a cluttered background.  Figure 2 is its 
FLIR input image, which was used to test the WAIST algorithm.  Figures 4a – 4c show that the WAIST 



 
 

adaptive threshold was iteratively computed and how it separates the AOI from the background.  As the 
number of iterations increase and a greater number of pixels are declared part of the background, the higher 
the confidence in the segmentation.   Figure 5 illustrates the number of objects with labeling from 1 to 8 (8 
objects acquired). Figure 6 shows the outcome of the segmentation. Furthermore, the algorithms also 
perform recursive iteration to further improve the final results of object segmentation by doing a check to 
ensure the algorithm didn’t go too far and convert some useful pixels to background or “over converge”.  
The final outcome of the algorithm is a segmentation of object from the background as shown in Figure 7.   
This output will help an analyst rapidly select the object from the background and it will increase the 
probability of object acquisition while decreasing the probability of missed object detection and PFA. 
 
      

                                
 
       Figure 2 Scene picture                                                Figure 3 Original IR scene image 
 
 

                               
 
               Figure 4a  Result of 1st Iteration                                                   Figure 4b  Result of 2nd iteration                                                 

                          
 
             Figure 4c  Result of 2nd iteration                                                      Figure 5 Object labeling   
 
 



 
 

                            
 
                 Figure 6 Object segmentation     Figure 7 final Output from WAIST  
 
 

3.0  APPLICATION OF 2D ADAPTIVE MTI IN FLIR IMAGERY 

3.1 Signal Subspace Processing 

A fundamental problem associated with these systems is that the stationary background should exhibit the 
same behavior (signature) when viewed by different sensory systems or at different time points. We refer to 
this scenario as perfectly calibrated sensors. Unfortunately, perfectly calibrated sensors do not exist in 
practice. Figure 8 represents a practical/realistic signal model for an uncalibrated dual sensory system that 
interrogates a scene that is composed of moving objects (change) as well as stationary objects.  

In the ideal case of perfectly calibrated sensors, the change or MTI in two images can be detected by 
simply subtracting one image from the other. With uncalibrated sensors, the differencing operation is not 
practical. This is due to the fact that most of these dual sensory systems seek to detect subtle (weak) 
changes. Unfortunately, the power of the calibration error exceeds the power of a change in most practical 
scenarios. 

Our approach for registering information in uncalibrated sensors is based on manipulating a system model 
with unknown parameters, which relates the outputs of two uncalibrated sensors, to develop a procedure to 
blindly calibrate the two outputs. This approach is based on a 2D adaptive filtering method that is identified 
in Figure 9. A practical method that does not require invention of large matrices, called Signal Subspace 
Processing (SSP), has been used to implement this 2D adaptive filter for radar platforms (Ref. [1]-[8]). 

 

 

 

 

 

 

 

 

 

Figure 8  Signal model for dual sense                                   Figure 9  2D adaptive calibration of dual                                                                            
imaging system                                                                      uncalibrated imagery 



 
 

 

Between consecutive frames of an IR imaging sequence there are usually both camera motions and object 
motions.  Before tracking moving objects, the effects of camera motions such as translation, rotation, 
zooming, panning, tiling and etc. need to be removed. 

Our objective is to develop an MTI algorithm for time-series imagery from a visible or FLIR sensor on a 
stationary or moving platform. A change detection-based MTI algorithm that was originally developed for 
RF, adaptively (blindly) compensates for: 

– Subtle rotation/scaling/shift (general spatial warping) of one image frame to another 
– Camera (sensor) miscalibration and motion  
– Subtle clutter (stationary objects) signature variations from one image frame to another 

The basic signal model is identical to the one that we illustrate in Figure 8 for a RF platform. Sensor 1 is 
equivalent to a given frame; Sensor 2 corresponds to the image captured by another frame. If the camera 
does not move and is perfectly calibrated, then simple subtraction of the two channels (frames) is sufficient 
to construct the MTI. The blocks represented by h1(x, y) and h2(x, y) identify practical scenarios in which 
the sensor is moving during the data acquisition. This results in: a) viewing different stationary clutter 
background (gross shift between the two frames) that necessitates blindly identifying an appropriate sweet 
spot (that is, the scene that is common between the two frames) by the algorithm; b) unequal blur caused by 
the nonlinear motion of the camera that requires processing via 2D adaptive filtering. 

It turns out that 2D versions of conventional adaptive filtering methods are computationally-intensive 
and/or require inversion of large matrices. A more practical algorithm, called Signal Subspace Processing 
(SSP), has been developed to address this issue. (This was originally developed for RF MTI and change 
detection Ref. [1]-[6].) We will examine this approach for an IR sensory system and provide results. 

3.2  Camera motion estimation and stabilization 

The basic hypothesis for this operation is that the relative coordinates of the camera for the present frame 
(e.g., Frame no. K that is called the test image) can be identified by cross-correlating this frame with a 
previous frame (e.g., Frame no. K-L1 that is called the reference image). Then, the relative motion between 
the test and reference images is estimated from the shift of the peak of their cross-correlation function from 
the origin. However, before performing the cross-correlation, two issues are addressed. First, the cross-
correlation will possess a sharper/tighter peak in the spatial domain if the prominent feature of the two 
images is enhanced prior to cross-correlation. For this purpose, we use a high spatial frequency filter 
algorithm to enhance the edge of the test and reference images.  

 
The second issue is related to the fact that the two frames that are cross-correlated do not record identical 
scenes due to the camera motion; that is, while most of the mid portions of the two images are the same, 
there are differences near the edges. Thus, if these different areas are not identified and removed prior to 
cross-correlation, the coordinates of the peak point might not be an accurate estimate of the relative shift 
between the two frames. Meanwhile, the common area (sweet spot) between Frames K and K-L1 is a 
function of the relative distance between the two frames that is unknown. However, the sweet spot between 
these two frames should be almost the same as the sweet spot between Frames K-1 and K-1-L1 (that is 
estimated earlier). Thus, we use this information to identify the sweet spots between Frames K and K-L1. 

Once the relative shift between the current test Frame K and the reference Frame K-L1 is estimated, the 
overall shift of the current test frame from the first frame is found via adding this estimate to the estimate of 
the overall shift of Frame K-L1 that was estimated earlier. An important issue is clearly the choice of the 
lag that is used for the reference image, that is, L1. The key principle for this selection is that the common 
area (sweet spot) of the reference and test imagery should be sufficiently large for the cross-correlation 
processing to yield an accurate estimate of the relative camera shift. In this case, the selection of the lag 
parameter L1 depends on the relative speed of the camera motion with respect to the frame rate.  

3.3  MTI via change detection 



 
 

Once a current (test) frame is stabilized with respect to the previous frames, the next step is the generation 
of its Moving Object Indicator (MTI) image. For this purpose, the test image, Frame K, is compared to a 
previous Frame K-L2 (that is, a reference image) to detect changes in the current scene. For the change 
detection, the user may apply the 2D adaptive filtering method that we outlined earlier (Ref. [1]-[6]). In the 
case of IR and visible imagery that may contain warping, the adaptive filtering is essential. However, if the 
warping of visible or IR is nominal, a simple differencing is quite effective and computationally 
inexpensive. In this case, however, it might be useful to achieve a better spatial registration of the test and 
reference imagery via the cross-correlation method that we described in the previous section for the camera 
stabilization. 

The rational for this is quite straightforward. In most cases, the camera motion also possesses slight rotation 
and scaling. The 2D adaptive filtering method does compensate for the subtle rotation and scaling of the 
test and reference imagery. However, when straight differencing is used, the slight rotation and scaling 
from one frame to another would result in a relatively small shift (for example, a couple of pixels) between 
Frames K and K-L2 even after the camera stabilization. (Recall that the camera stabilization Frame K is 
achieved via cross-correlating it with another reference image, that is, Frame K-L1.) Thus, prior to 
differencing, the cross-correlate of Frames K and K-L2 (that is, the test and reference images for change 
detection) are constructed to estimate their relative shift in the spatial domain. After compensating for this 
shift, the MTI is generated from the difference of the registered test and reference images.  

 
Once an MTI image is created, the next step is to search this image for potential change or changes that 
represent moving objects. For this purpose, the peak of the MTI image is identified. If the value of the peak 
is greater than a pre-specified threshold, the algorithm decides that a moving object is present.  A specific 
chip size around this peak is extracted. Using the moment method, the center of the gravity of the chip is 
determined, and recorded as the coordinates of a moving object in the test image. Then, the chip area 
around this moving object is nulled (zeroed) in the MTI image. The algorithm then loops back to the part 
where the peak of the MTI image is tested to determine if a moving object is present. After the peak value 
of the MTI image goes below the threshold, the task is completed with the coordinates of all moving 
objects recorded.  The choice of the lag L2 is critical for the success of the change detection algorithm. The 
lag should be sufficiently large (in time) for a moving object to exhibit variations (changes) from Frame K-
L2 to Frame K. Meanwhile, if the lag L2 is too large, then the common area (sweet spot) between the test 
and reference images becomes too small; that is, a large portion of the scene cannot be examined for MTI.  
As in the case of the camera stabilization, the frame rate plays an important role in the selection of the 
parameter L2. In the change detection problem, however, the relative speeds of the moving object and the 
frame rate should be considered to determine L2 (and not the speed of the camera motion since that is 
compensated for in the camera stabilization phase). As we mentioned before, the lag L2 should be 
sufficiently large such that a moving object in the imaging scene exhibits a shift due to a translational 
motion and/or any other motion (for example, waving arms) that is more than a couple of pixels from 
Frame K-L2 to Frame K; meanwhile, the lag L2 should be small enough to have a common area between 
Frames K-L2 and K that encompasses most (for example, 90 percent) of the imaging scene. 

3.4  Results with an IR Camera 

The camera stabilization and change detection algorithms are tested using a panning IR camera that is 
tracking two running individuals. Figures 10, 11, and 12 respectively, show the MTI, test image, and test 
image after being spatially-registered (stabilized) with respect to the first frame for Frames 2 and 78 of this 
database.  The lag parameters that are used for this experiment are L1=1 and L2=5. The object chip size is 
60 by 30 pixels. 

 



 
 

        
                     Figure 10  MTI   image                                                           Figure 11  Test image                                    
 

 
                                                                                                                                                                         

Figure 12  Panning FLIR camera: MTI, test image, and  
                                                    camera stabilized test image for frame 78 

4.0  Multiple Moving Object Association and Tracking 

4.1 Association and Tracking Algorithm 

Before outlining the association and tracking algorithm, we first review the MTI algorithm for multiple 
moving objects. After an MTI image is constructed, the next step is to search this image for potential 
change or changes that represent moving objects. For this purpose, the peak of the MTI image is identified. 
If the value of the peak is greater than a pre-specified threshold, the algorithm decides that a moving object 
is present.  The threshold is predefined based on statistical properties of the image scene, and then a 
specific chip size around this peak is extracted.  
 
Using the moment method, the center of gravity of the chip is determined, and recorded as the coordinates 
of a moving object in the test image. Then, the chip area around this moving object is nulled (zeroed) in the 
MTI image. The algorithm then loops back to the part where the peak of the MTI image is tested to 
determine if a moving object is present. After the peak value of the MTI image goes below the threshold, 
the task is completed with the coordinates of all moving objects recorded; the outcome is illustrated in 
Figure 13-14 below. 

 



 
 

 
   
      Figure 13  Multiple moving objects                                      Figure 14  MTI of multiple moving objects 

 
Note that the above-mentioned MTI algorithm detects multiple moving objects in the order of their strength 
in the MTI image. Thus, moving objects of the same type that have almost the same MTI signature levels 
are likely to have been detected in a random order. Thus, there is no information in the MTI image to clue 
the user to determine where a detected moving object in the present frame was in the previous frame and/or 
if a moving object just appeared in the scene. 

 
The association and tracking algorithm resolves this ambiguity. The basic principles that are used to 
develop this algorithm are: a) there is continuity in the motion of a moving object (no random jumps) and 
b) a moving object does not move with a relatively high speed (with respect to the frame speed). Figure 15 
exhibits how the algorithm works. This figure shows three associated object tracks in red, blue and green; 
these are shown with filled red, blue and green circles and smoothed dotted lines that approximately pass 
through them. Using linear prediction, the algorithm estimates (predicts) the coordinates of each of the 
three objects in the present (test) frame; these are shown by unfilled red, blue and green circles. 
 

 
 
 
 
 
 
 
 

 
 
                           

                
 
 
                      
 
                          Figure 15  Depiction of Multiple Moving Object Track Association 

 
Then, the algorithm identifies the distance between the coordinates of a detected moving object (that is 
shown by a black filled circle) in the test (current) frame to the predicted coordinates; these are identified as 
D1, D2 and D3. The algorithm selects the minimum distance that is D2 in the example in Figure 5. If this 
distance is less than a prescribed/pre-assigned maximum distance, call it Dmax, then the detected object 
(black filled circle) is associated with Track 2 (blue objects). However, if D2 is larger than Dmax, then the 
algorithm decides that the detected object is a new object in the scene, and starts a new object track for it.  
Dmax is set based on basic principle assumptions and constrains parameters of the object and the sensor as 
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described above.  The algorithm tests all the detected objects in the present frame and associates them 
based on the above-mentioned minimum distance that is less than Dmax to the predicted object coordinates 
of the previously detected tracks. As we mentioned earlier, if a presently detected object cannot be 
associated with an existing track, a new object track is created. Meanwhile, if a predicted object cannot be 
associated with any of the detected objects in the present frame, then it is assumed to be interrupted but the 
track is not terminated. For those interrupted tracks, they are still treated as legitimate tracks. In fact, their 
predicted object coordinates are updated for the next frame and tested to be associated with the detected 
objects for the next frame.  Once an interrupted object track is detected again, then a simple interpolation 
method (e.g., spline) is used to fill the gaps/interruptions in that track. Finally, all the tracks go through a 
smoothing/filtering operation to remove spikes and irregularities in a track, and yield a continuous-looking 
motion path for each moving object in the imaging scene. 

4.2  Results with IR Camera 

The multiple object association and tracking algorithm is tested using a panning IR camera Figure 12 that is 
tracking two running individuals. Figure 16 shows the associated tracks using the above-mentioned 
prediction and minimum distance algorithm. The output tracks are shown after interpolating and smoothing 
the interrupted tracks. 
 
 
 

       
 

                    Figure 16  Filtered interpolated associated tracks of moving objects 
 

5.0  GLOBAL SSP AND MULTI-FRAME SYNTHESIZED REFERENCE IMAGE 

5.1 Analytical Foundation 

The basic principle behind constructing change detection (CD) or MTI from two or multiple imagers that are acquired 
at different time points is that after compensating/calibrating for known (deterministic) differences of the two images 
and their spatial and spectral registration, the MTI image can be constructed via the following: 

                                                          ( ) ( ) ( )yxfyxfyxf RTd ,,, −= ,                                                          (6) 

where ( )yxfT ,  and ( )yxfR ,  are, respectively, the test image and the deterministically-calibrated reference image. 

In practice, due to unknown variations of the camera electronics and platform coordinates, there are unknown 
image Impulse Response Function or Point Spread Function (IPR/PSF) variations and spatial warping in the acquired 
imagery that are unknown to the user. The simplest way to model this is to assume that these variations are invariant in 
the 2D domain of acquired imagery. In that case, under the null hypothesis, that is, there is no change or moving object, 
the test and reference images are related via the following: 

                                                             
( ) ( ) ( )

( ) ( ) dvduvuhvyuxf

yxhyxfyxf

R

RRT

∫ −−=

⊗=

,,

,,,ˆ
                                     (7) 



 
 

where ⊗  represents two-dimensional convolution, and ( )yxh ,  is an unknown two-dimensional filter. Under the 
null hypothesis, this filter can be determined using the Linear Mean Square (LMS) algorithm; this approach is called 
adaptive filtering. A practical implementation of this method for the two-dimensional problems was described in our 
Ref. 2, and was referred to as Signal Subspace Processing (SSP). 

The 2D complex image ( )yxfRT ,ˆ  is the LMS estimate of the test image from the reference image under the 

null hypothesis; we call ( )yxfRT ,ˆ  the calibrated reference image. The MTI is the constructed using the following: 

                                             ( ) ( ) ( )yxfyxfyxf RTTd ,ˆ,, −= ,                                                                 (8) 

that yields zero under the null hypothesis (that is, no change or moving object). In presence of a change or a moving 

object, the LMS model is not valid. In this case, the estimate of the test image ( )yxfRT ,ˆ  is not equal to the test 

image ( )yxfT , . Hence, the difference of these two complex images yields a nonzero residual that signals the 
presence of a change or moving object. 

A more realistic miscalibration model for the two receiver channels is based on the fact that the filter is spatially-
varying. In this case, the relationship between the reference and test images can be expressed via the following: 

                                            ( ) ( ) ( ) dvduvuhvyuxfyxf xyRRT ∫ −−= ,,,ˆ                                            (9)  

where in this model the filter ( )vuhxy ,  varies with the spatial coordinates, that is, ( )yx, . While the above model 

is a more suitable one, it is computationally prohibitive to implement the LMS or SSP method for this scenario. 

A practical alternative is to assume that the filter is approximately spatially-invariant within a small area in the 
spatial domain. In this case, we can divide the test image into sub-patches within which the filter can be approximated 
to be spatially-invariant. The resultant model is 

                                          
( ) ( ) ( )

( ) ( ) dvduvuhvyuxf

yxhyxfyxf

R

RRT

∫ −−=

⊗=

,,

,,,ˆ




                                             (10) 

where   represent an index for the sub-patches.  

In the approach that we call Local Signal Subspace Processing (LSSP), the LMS/SSP method is used to estimate 

the local unknown calibration filter ( )yxh , . After this filter is estimated for each sub-patch, an approach that we 

call Global Signal Subspace Processing (GSSP) is used to estimate the original spatially-varying filter ( )vuhxy ,  and 

the calibrated reference image (that is, estimate of the test image) via 

.                               ( ) ( ) ( ) dvduvuhvyuxfyxf xyRRT ∫ −−= ,,,ˆ                                                     (11) 

We have implemented a version of this algorithm, and are studying methods to improve its estimate. 

In the case of multi-frame data, the user has access to multiple reference images, e.g., ( )yxf n
R ,)( , 

,,,1 Nn =  where N  is the number of reference images. Thus, for the n -th reference image, the calibrated 
reference image is 

                             ( ) ( ) ( ) dvduvuhvyuxfyxf n
xy

n
R

n
RT ∫ −−= ,,,ˆ )()()( ,                                              (12) 

,,,1 Nn =  where ( )vuh n
xy ,)(  is the adaptive filter and is constructed via processing the test image ( )yxfT ,  

and the n -th reference image. ( )yxf n
R ,)(  



 
 

This procedure results in N  calibrated reference images, ( )yxf n
RT ,)( , Nn ,,1= . A critical issue in this 

investigation is how to combine these calibrated reference images to construct a common reference image, called a 
Multi-Frame Synthesized Reference Image that yields robust MTI imagery. 

 
6.0  CONCLUSION 

 
 A good understanding of sensors specification and characteristic is very critical / essential for signal / 
image processing and algorithm development efforts, especially for IR camera.  The qualities of IR imaging 
greatly influence the development, performance, and robustness of the signal / image processing 
algorithms.  Image scene displays on computer monitor screen appear magnificent in the human observer 
point of view may not acceptable for machine vision.   In some cases, the image scene that was enhanced 
contrast by employing the histogram equalization or other techniques has a poorer result than the raw data 
in testing of object detection algorithm.   When the contrast of the object was enhanced from surrounding 
background, the intensity of pixels of clutter like objects were also proportionally increased, therefore it 
induced a high probability of false alarm (PFA). A novel adaptive/iterative image processing algorithm was 
developed exercised against mainly the raw data set, and its outcome of the WAIST algorithm appears very 
promising for fixed mobile object detection and segmentation. 
 
This paper also described methods to detect moving objects in a sequence of imagery that was acquired via 
a visible or IR sensor on a moving platform.  We presented an adaptive image processing method for blind 
geo-registration of the acquired spatially warped imagery and their calibration. We outlined a method to 
associate the detected moving objects in adjacent frames; the results were used to identify the motion track 
of each moving object in the imaging scene.  Results were demonstrated on IR and visible imagery of 
ground and capture flight test data collection sets to exhibit the merits of the described methods. 
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